

The International Academy for Production Engineering

32nd CIRP Conference on Life Cycle Engineering (LCE2025) – Apr. 7-9 2025

LCA studies to support a waste treatment company in the context of the circular economy

by

Dolci G., Tua C., Crippa I., Grosso M., Rigamonti L.

Presenting author: Prof. Lucia Rigamonti, Politecnico di Milano, AWARE research group (Department of Civil and Environmental Engineering) Email: lucia.rigamonti@polimi.it

Procedia CIRP www.LCE2025.com **32nd CIRP Conference on Life Cycle Engineering** (LCE2025)

7th to 9th April 2025

The University of Manchester, Manchester, United Kingdom (UK)

CIRP office: 9 rue Mayran, 75009 PARIS – France, E mail: cirp@cirp.net, http://www.cirp.net

A path of environmental sustainability

Life Cycle Assessment (LCA) has gained wide acceptance as a tool to support waste treatment companies to:

- understand the overall impacts and the relative hotspots both on-site and across the value chain
 - promote compatibility between productivity and environmental impacts
 - improve their role in the circular economy and in the conservation of natural resources

THE EXAMPLE OF RMB S.p.A.

Multi-functional **platform** in Brescia (Lombardy Region, Italy) for **treating** and **recovering special hazardous and non-hazardous waste** LCAs ON REPRESENTATIVE PRODUCTS from TREATED WASTE

- hotspots identification across the production
- definition of strategies for impacts reduction
- communication of the impact profile to the final users

ORGANIZATIONAL CARBON FOOTPRINT

quantification of direct and indirect GreenHouse Gases (GHG) emissions of the company, aiming at defining a reduction plan

A path of environmental sustainability

Life Cycle Assessment (LCA) has gained wide acceptance as a tool to support waste treatment companies to:

- understand the overall impacts and the relative hotspots both on-site and across the value chain
 - promote **compatibility** between **productivity** and **environmental impacts**
 - improve their role in the **circular economy** and in the **conservation of natural resources**

Multi-functional **platform** in Brescia (Lombardy Region, Italy) for treating and recovering special hazardous and non-hazardous waste

THE EXAMPLE OF RMB S.p.A.

- hotspots identification across the production
- definition of strategies for impacts reduction
- communication of the impact profile to the final users ٠

ORGANIZATIONAL CARBON FOOTPRINT

quantification of direct and indirect GreenHouse Gases (GHG) emissions of the company, aiming at defining a reduction plan

Italian management system of End-of-Life Vehicles (ELVs): numbers

1. Eurostat (2025). End-of-life vehicle statistics (here)

2. ISPRA (2024). Italian report on special waste. Edition 2024 (here in Italian)

Italian management system of End-of-Life Vehicles (ELVs): numbers

2. ISPRA (2024). Italian report on special waste. Edition 2024 (here in Italian)

ELVs recovery treatment: the case of RMB

ELVs recovery treatment: the case of RMB

The production of Ferro Proler at RMB

LCA study setup

SYSTEM BOUNDARY: partial LCA, from cradle to the gate of RMB

DECLARED UNIT (DU): 1 tonne of Ferro Proler

LCA study setup

SYSTEM BOUNDARY: <u>partial LCA</u>, from cradle to the gate of RMB

DECLARED UNIT (DU): 1 tonne of Ferro Proler

- Ferro Proler is produced from a waste (ELVs) → the environmental load of its production should be partitioned between RMB system and the system that generated the ELVs
- Guidelines of the International EPD[®] System ("polluter pays principle") → the system boundary starts when ELVs gain a market value (gate of the car wrecker)

THE INTERNATIONAL EPD[®] SYSTEM

Results: LCA of Ferro Proler production

Final treatment of the waste fraction plastics and rubbers	
Environmental loads at RMB facility (ELVs treatment)	
Transportation of ELVs from car wreckers to RMB facility	

А	5.0×10 ⁻¹	mol H⁺ eq.
CC	3.1E×10 ²	kg CO ₂ eq.
FEC	4.6×10 ²	CTUe
PM	6.7×10 ⁻⁶	disease incidence
ME	4.2×10 ⁻¹	kg N eq.
FE	9.3×10 ⁻³	kg P eq.
TE	2.3	mol N eq.
НТ _с	6.5×10 ⁻⁸	CTUh
HT _{NC}	2.1×10 ⁻⁶	CTUh
IR	2.2	kBq U-235 eq.
LU	8.8×10 ²	Pt
OD	1.5×10 ⁻⁶	kg CFC11 eq.
POF	7.1×10 ⁻¹	kg NMVOC eq.
RUF	1.0×10 ³	MJ
RUMM	1.8×10 ⁻⁴	kg Sb eq.
WU	1.2×10^{1}	m ³ deprived

IMPACTS per 1 tonne of Ferro Proler (DECLARED UNIT)

IMPACT CATEGORIES (Environmental Footprint impact assessment method, version 3.1)

A=acidification; CC=climate change; FEC=freshwater ecotoxicity; PM=particulate matter; ME=marine eutrophication; FE=freshwater eutrophication; TE=terrestrial eutrophication; HT_{c} =human toxicity cancer; HT_{NC} =human toxicity non-cancer; IR=ionising radiation; LU=land use; OD=ozone depletion; POF=photochemical ozone formation; RUF=resources use, fossils; RUMM=resources use, minerals and metals; WU=water use

- Most important environmental loads associated to stages performed outside RMB facility (transportation of ELVs from car wreckers and final treatment of plastics and rubbers) except for IR
- Treatment of the plastics and rubbers → impact mainly associated to air emissions of their combustion in the cement kiln and in the incineration plant (fossil CO₂, NO_x, Cd, and Hg)
- Transportation car wreckers RMB: road transportation (average distance of 445 km)

Impact improvement: management of plastics and rubbers

 Identification of a more sustainable treatment for plastics and rubbers (material recovery in place of energy recovery) → development of new technologies at the commercial scale

- Pilot-scale processes in the existing literature:
 - i) Conversion into aggregates for asphalt or concrete used in non-structural applications [Rao et al., 2024]

ii) Separation into individual plastic polymers by sinking flotation [Quelal et al., 2022]

 RMB S.p.A. is testing a new treatment for the plastics and rubbers dedicated to the production of a Secondary Reducing Agent (SRA) → substitution of coke in electric-arc furnace steel mills

Compliant with the Italian Standard UNI 10667-17:2021 Plastic raw-secondary materials - Blends of heterogeneous plastics from industrial residue and/or from post-consumer materials, to be used in metallurgical and steel processes - Requirements and test methods

Impact improvement: management of plastics and rubbers

 Identification of a more sustainable treatment for plastics and rubbers (material recovery in place of energy recovery) → development of new technologies at the commercial scale

- Pilot-scale processes in the existing literature:
 - i) Conversion into aggregates for asphalt or concrete used in non-structural applications [Rao et al., 2024]

ii) Separation into individual plastic polymers by sinking flotation [Quelal et al., 2022]

 RMB S.p.A. is testing a new treatment for the plastics and rubbers dedicated to the production of a Secondary Reducing Agent (SRA) → substitution of coke in electric-arc furnace steel mills

PRODUCTION FROM PLASTICS AND RUBBERS

1° step - SEPARATION OF BOTH THE RESIDUAL METALLIC FRACTIONS AND THE HEAVY MINERAL FRACTION \rightarrow sieving, size reduction, and separation steps

2° step - <u>**REDUCTION OF MOISTURE, SIZE, AND VOLUME OF THE MATERIAL** \rightarrow use of densifiers and granulators</u>

A path of environmental sustainability

Life Cycle Assessment (LCA) has gained wide acceptance as a tool to support waste treatment companies to:

- understand the overall impacts and the relative hotspots both on-site and across the value chain
 - promote **compatibility** between **productivity** and **environmental impacts**
 - improve their role in the **circular economy** and in the **conservation of natural resources**

THE EXAMPLE OF RMB S.p.A.

Multi-functional **platform** in Brescia (Lombardy Region, Italy) for treating and recovering special hazardous and non-hazardous waste

ORGANIZATIONAL CARBON FOOTPRINT

quantification of direct and indirect GreenHouse Gases (GHG) emissions of the company, aiming at defining a reduction plan

Organizational Carbon Footprint analysis - methodology

Organizational Carbon Footprint analysis - results

- **Reduction of GHG emissions** in one year thanks to:
 - reduction of the GHG emission factor for the electricity consumption from the grid (external factor)
 - progressive installation of photovoltaic panels on-site (up to 4.4 MW)
 - raising awareness among personnel on the topic
- Most of the **emission** is due to **the electricity from the grid** → **prevention measures** should be implemented

Conclusions

LCA helps waste management companies to become more conscious of their environmental impacts and to define a plan for improving their performance from both a product and an organization perspective

PRODUCT LCA ON FERRO PROLER:

- i. main impact contributions from stages performed outside RMB facility
- *ii. optimization of the logistic* and *implementation of new recycling treatments* for *plastics and rubbers* (main scrap of the process)
- ORGANIZATIONAL CARBON FOOTPRINT (GHG EMISSIONS OF CATEGORY 1 AND CATEGORY 2):
- *i. electricity consumption* plays a *crucial role* in the GHG emissions
- *ii. reducing* of *electricity consumption* at the source and promoting the *purchase of certified renewable energy* should be prioritized

New LCAs will soon be conducted for other key products of the company using a similar modeling approach

Questions?

Contact: lucia.rigamonti@polimi.it

Assessment on WAste and REsources

Reference blog of the AWARE research group:

https://www.aware.polimi.it/

