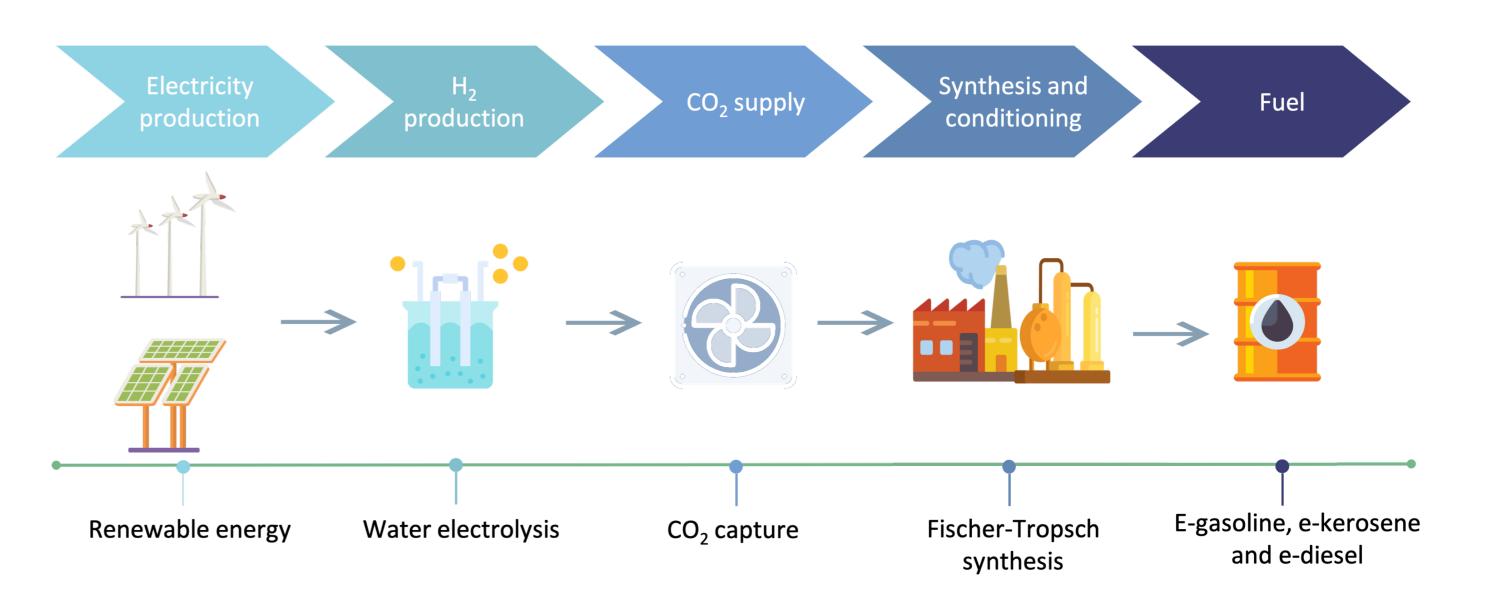
XVIII Convegno dell'Associazione Rete Italiana LCA LIFE CYCLE THINKING A SUPPORTO DI MODELLI **DI PRODUZIONE E DI CONSUMO SOSTENIBILI** PESCARA, 3-5 LUGLIO 2024

LIFE CYCLE ASSESSMENT OF POWER-TO-LIQUID FUELS:

A LITERATURE REVIEW

Paula Martina Barbato¹, Giovanni Dotelli²

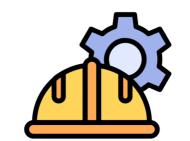


and REsource

¹ Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy ² Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy E-mail: paulamartina.barbato@polimi.it

INTRODUCTION AND OBJECTIVE

New promising non-fossil based fuels are emerging: *e-fuels*. These show properties similar to their fossil counterparts, but are synthesised by combining H₂ and CO₂ through highly energy-intensive processes.


- *— to be a potential decarbonisation solution,* the energy used must be renewable
- **GOAL**: review of LCA studies focusing on **drop-in** e-fuels produced via Fischer-Tropsch synthesis for the **transportation** sector.

MATERIALS AND METHODS

Ref.	Goal	Functional unit (related to)	System boundary	Multi- functionality	LCIA methodology	Impacts (other than CC ^(d))	Endpoint level impacts	Source of background data	Sensitivity analysis
[1]	evaluation	mass and energy	WtW ^(a)	allocation	EIO-LCA	no	no	literature	yes
[2]	comparison	mass	CtG ^(b)	allocation	ReCiPe 2016	yes	yes	ecoinvent v.3.5	no
[3]	comparison	energy	WtW ^(a)	allocation	ReCiPe 2016	yes	no	ecoinvent v.3.7.1	yes
[4]	comparison	mass	CtG ^(b)	system expansion	ReCiPe 2016	yes	yes	ecoinvent v.3.5	no
[5]	comparison	energy	WtW ^(a)	allocation	CML 2001	yes	no	GaBi database	yes
[6]	comparison	energy	WtW ^(a)	n.s. ^(c)	GREET	no	no	GREET 2022	no
[7]	evaluation	energy	WtW ^(a)	allocation	ReCiPe 2016	yes	no	ecoinvent v.3.6	yes

METHODOLOGICAL CHOICES

^(a) WtW = Well-to-Wheel analysis; ^(b) CtG = Cradle-to-Gate analysis; ^(c) n.s. = not specified; ^(d) CC = climate change impact category.

TECHNICAL PARAMETERS

Ref.	Product	Location	PV ^(a)	Wind	Nuclear	Grid mix ^(b)	AEL ^(c)	PEMEL ^(d)	SOEL ^(e)	Ind ^(f)	Biog ^(g)	Air	
											BIOG (8)	Ads ^(h)	Abs ⁽ⁱ⁾
[1]	e-diesel	CA				х	х						х
[2]	e-gasoline	GB		х				х	х	х			
[3]	e-kerosene	SE				х	х	х			х		
[4]	e-diesel	GLO	х	х	x	х		х		х			х
[5]	e-kerosene	DE	х	х		х		х	х			х	х
[6]	FT-fuel	US			x				х		x		
[7]	e-kerosene	GB		х			х					х	

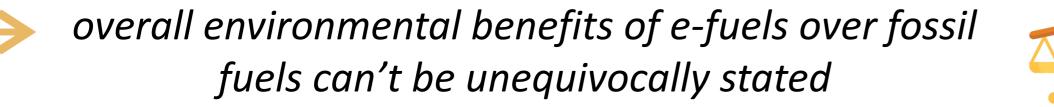
^(a) PV = photovoltaic system; ^(b) Share of renewable energy in the grid mix: [1] = 95%, [3] = 66%, [4] = 25%, [5] = 31%; (c) AEL = alkaline electrolyser; (d) PEMEL = proton exchange membrane electrolyser;

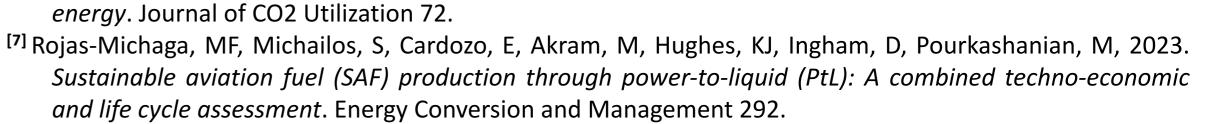
(e) SOEL = solid oxide electrolyser; (f) Ind = industrial CO₂ source; (g) Biog = biogenic CO₂ source;

^(h) Ads = adsorption-based Direct Air Capture (DAC); ⁽ⁱ⁾ Abs = absorption-based DAC.

CONCLUSIONS

E-fuels' potential to reduce climate change is mainly affected by electricity carbon intensity





multiple impact categories must be considered to fully understand their effects on human health, ecosystems and resources

REFERENCES

- ^[1] Liu, CM, Sandhu, NK, McCoy, ST, Bergerson, JA, 2020. A life cycle assessment of greenhouse gas emissions from direct air capture and Fischer– Tropsch fuel production. Sustainable Energy Fuels 4.
- ^[2] Freire Ordóñez, D, Shah, N, Guillén-Gosàlbez, G, 2021. *Economic and full environmental assessment of* electrofuels via electrolysis and co-electrolysis considering externalities. Applied Energy 286.
- ^[3] Lai, YY, Karakaya, E, Björklun, A, 2022. Employing a Socio-Technical System Approach in Prospective Life Cycle Assessment: A Case of Large-Scale Swedish Sustainable Aviation Fuels. Front. Sustain. 3.
- ^[4] Medrano García, JD, Charalambous, MA, Guillén-Gosàlbez, G, 2022. *Economic and Environmental Barriers* of CO2-Based Fischer–Tropsch Electro-Diesel. ACS Sustainable Chem. Eng. 10.
- ^[5] Micheli, M, Moore, D, Bach, V, Finkbeiner, M, 2022. *Life-Cycle Assessment of Power-to-Liquid Kerosene* Produced from Renewable Electricity and CO2 from Direct Air Capture in Germany. Sustainability 14.
- ^[6] Delgado, HE, Cappello, V, Zang, G, Sun, P, Ng, C, Vyawahare, P, Elgowainy, AA, Wendt, DS, Boardman, RD, Marcinkoski, J, 2023. Techno-economic analysis and life cycle analysis of e-fuel production using nuclear

