

Il processo Waste to Methanol

Valutazione di ecosostenibilità in un'ottica di ciclo di vita come trattamento end of life circolare

Algssio Castagnoli, Ahmed Salem, Isabella Pecorini, Renato Iannelli, Umberto Desideri

Dott. Alessio Castagnoli

PhD Student

DESTEC - Dipartimento di Ingegneria dell'Energia dei Sistemi, del Territorio e delle Costruzioni LISAP - Laboratorio di Ingegneria Sanitaria Ambientale dell'Università di Pisa e-mail: alessio.castagnoli@phd.unipi.it

Rifiuti secondari: produzione e potenziale

- 3.347.529 t prodotte all'interno della regione Toscana nel 2021 (ARRR, 2021);
- Circa 300.000 t di rifiuti valorizzabili energeticamente all'interno dell'ATO Centro, circa i 2/3 sono attualmente inviati a discarica (Alia, 2021).

ATO				
Centro	U.M.	2018	2019	2020
Riciclo	ton	487.276,00	551.743,00	518.409,00
Termovalori zzazione	ton	74.540,00	87.453,00	99.646,00
Discarica	ton	Ĺ	252.662,00	ĺ
Totale	ton	889.395,00	891.858,00	834.784,00

Composizione elementale					
С	% s.s.	43,53%			
н	% s.s.	5,62%			
0	% s.s.	25,48%			
N	% s.s.	0,58%			
s	% s.s.	0,48%			
Inerti	% s.s.	24,32%			
% umidità	u.j	13,29%			
% biodegr.	B.j	35,05%			
% secco	W.s,j	86,71%			

3

Waste to syngas

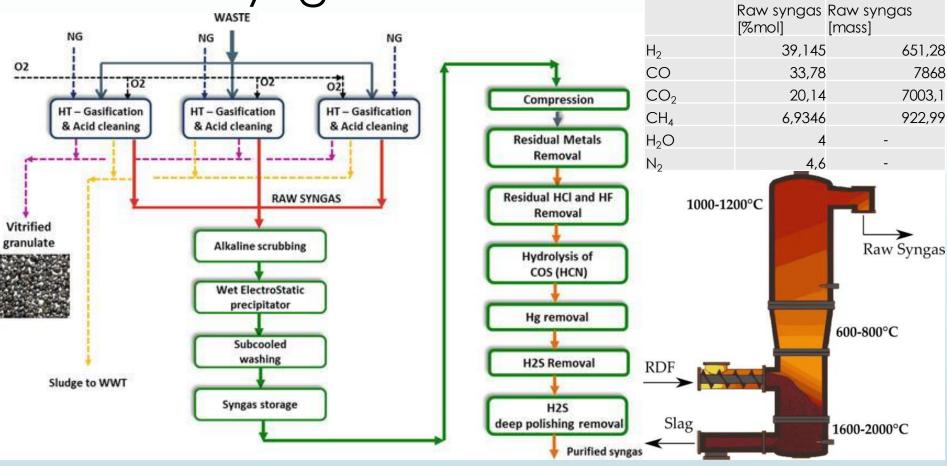
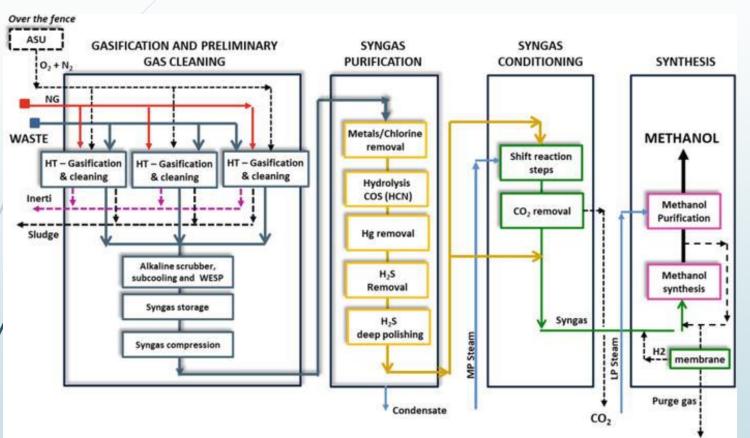



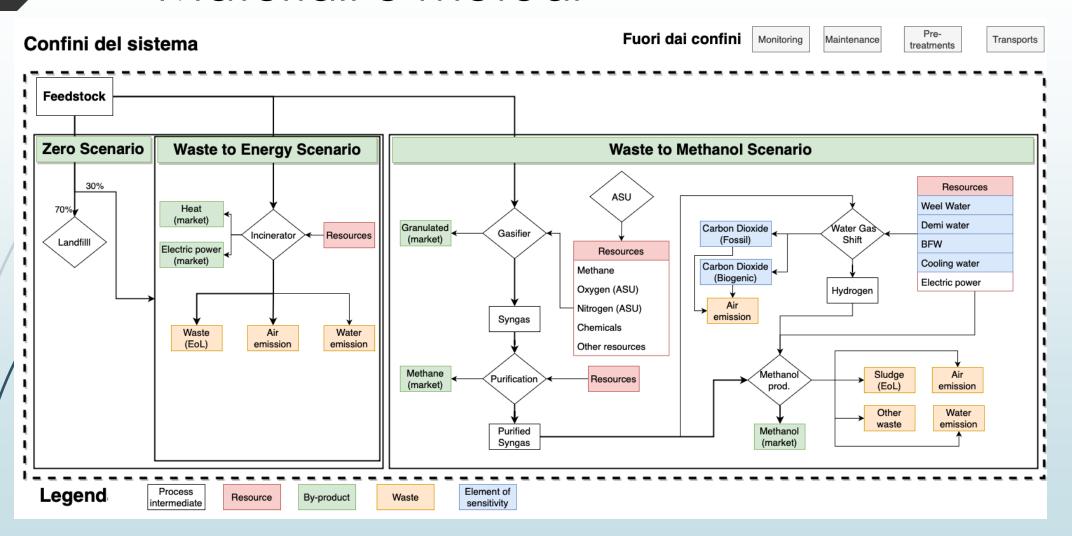
Diagramma a blocchi gassificatore (Borgogna et al, 2021)

Profilo gassificatore (Borgogna et al, 2021)

Syngas to methanol

Reazioni per la produzione del metanolo:

- CO₂+3H₂ ⇒ CH₃OH+H₂O
- $CO_2+H_2 \rightleftharpoons CO+H_2O$


Modulo metanolo $MM=(H_2-CO_2)/(CO+CO_2)$

 $MM \approx 2.0 - 2.4$

Diagramma a blocchi Waste to methanol (Borgogna et al, 2021)

Materiali e metodi

Materiali e metodi

Scenario zero

- 70% dei rifiuti destinato a discarica, 30% dei rifiuti destinato a termovalorizzazione,
- Discarica simulata con il processo ((Sanitary Landfill CH)),
- Processo di incenerimento come Waste to Energy.

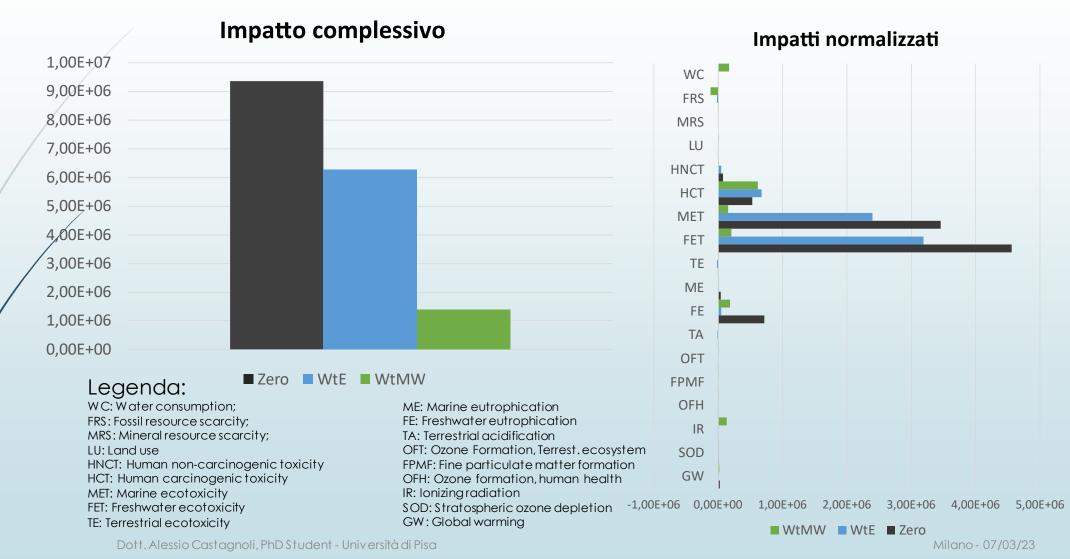
CO ₂ fossile	0,6768	Kg/Kgw
_CO ₂		
biogenica	0,5523	Kg/Kgw
_ Calore	0,5995	KJ/Kgw
Elettricità	2,6378	KJ/Kgw

Waste to Energy

- Modificato processo interno di Ecoinvent,
- Sostituiti i valori per: emissioni in aria di CO₂ fossile e CO₂ biogenica (calcolati),
- Inserito il recupero di energia termica ed elettrica (Astrup et al, 2011).

Waste to Methanol – Water Gas Shift Reaction

- Run modello per calcolo composizione Syngas,
- Calcolo del MM ottimale con la nostra composizione \rightarrow MM = 2,1,
- Calcolo produzione di idrogeno per reazione WGS, di metanolo e di CO₂,
- Creazione di un processo che attraverso i dati calcolati internamente, i dati di letteratura (Borgogna et al, 2021) e i dati presenti in Ecoinvent, utilizzati per i consumi di chemical,
- I dati relativi ai chemical sono stati ottenuti dai processi già presenti nel database.

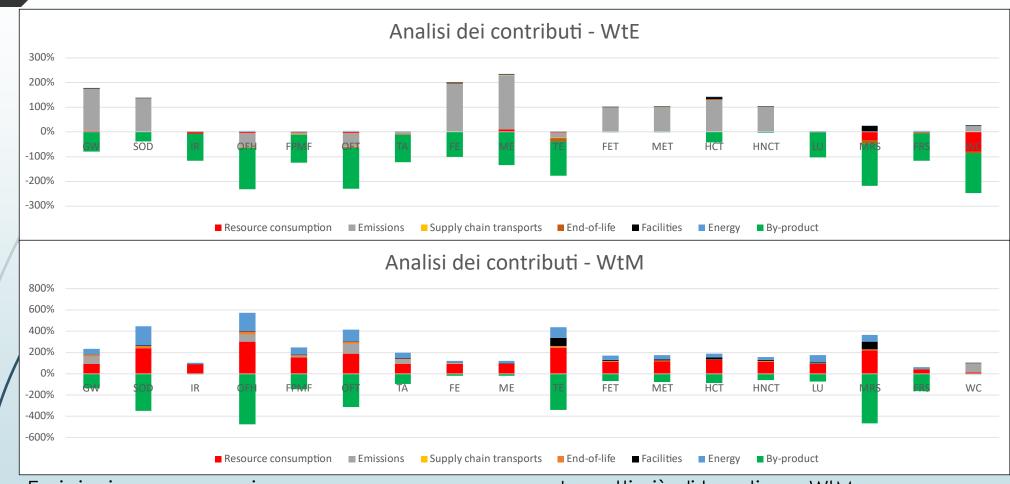

Materiali e Metodi

- Software utilizzato: SimaPro 9.3
- Database utilizzato: Ecoinvent 3.8
- Metodo utilizzato: ReCiPe 2016 Midpoint (H) CV1.07/World (2010) H

Scenario	Processi principali		
Zero scenario	Municipal solid waste {CH} treatment of, sanitary landfill APOS, U		
Waste to energy	 Municipal solid waste {IT} treatment of, incineration APOS, U Electricity, medium voltage {IT} electricity, from municipal waste incineration to generic market for APOS, U Heat, district of industrial, other than natural gas {RER} market group for APOS, U 		
Waste to methanol	 Methanol, from biomass {CH} methanol production, from synthetic gas APOS,U Supplementary cementitious materials {US} ground granulated blast furnace slag to generic market for supplementary cementitious materials APOS,U Natural gas, high pressure {IT} market for APOS,U Methanol {GLO} market for APOS,U Water cooling unspecified origin, CH Water, well, IT Oxygen, liquid {RER} air separation, cryogenic APOS, U Refinery sludge {Europe without Switzerland} market for refinery sludge APOS, U 		

Risultati - normalizzazione

Risultati – scarti percentuali


Categoria d'impatto	U.M.	Zero vs WtE	Zero vs WtM	WtE vs WtM
Global warming	kg CO2 eq	-46%	-32%	25%
Stratospheric ozone depletion	kg CFC11 eq	156%	-33%	-74%
Ionizing radiation	kBq Co-60 eq	-661%	18834%	2563%
Ozone formation, Human health	kg NOx eq	-490%	405%	152%
Fine particulate matter formation	kg PM2.5 eq	-293%	390%	174%
Ozone formation, Terrestrial ecosystems	kg NOx eq	-490%	584%	182%
Terrestrial acidification	kg SO2 eq	-279%	481%	200%
Freshwater eutrophication	kg P eq	-94%	-74%	314%
Marine eutrophication	kg N eq	-99%	-95%	520%
Terrestrial ecotoxicity	kg 1,4-DCB	-270%	216%	131%
Freshwater ecotoxicity	kg 1,4-DCB	-30%	-96%	-94%
Marine ecotoxicity	kg 1,4-DCB	-31%	-96%	-94%
Human carcinogenic toxicity	kg 1,4-DCB	28%	17%	-9%
Human non-carcinogenic toxicity	kg 1,4-DCB	-42%	-94%	-90%
Land use	m2a crop eq	-266%	257%	143%
Mineral resource scarcity	kg Cu eq	-378%	-445%	-14%
Fossil resource scarcity	kg oil eq	-299%	-1984%	-423%
Water consumption	m3	-555%	50919%	7856%

- Zero vs WtE → WtE Migliore per 16 categorie su 18
- Zero vs WtM → WtM Migliore per 8 categorie su 18
- WtE vs WtM → WtM migliore per 7 categorie su 18

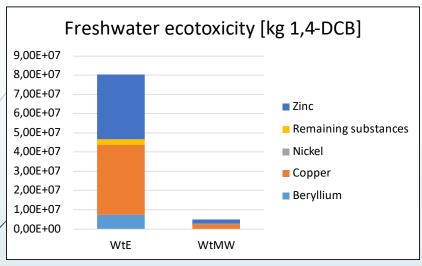
Scarto < -300% -300% < Scarto < -50% -50% < Scarto < 50% Scarto > 50%

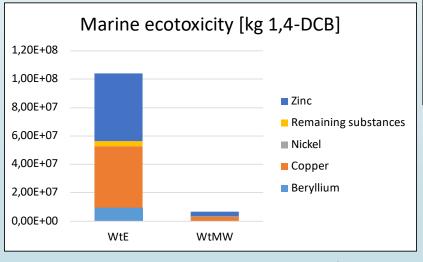
Risultati – analisi dei contributi

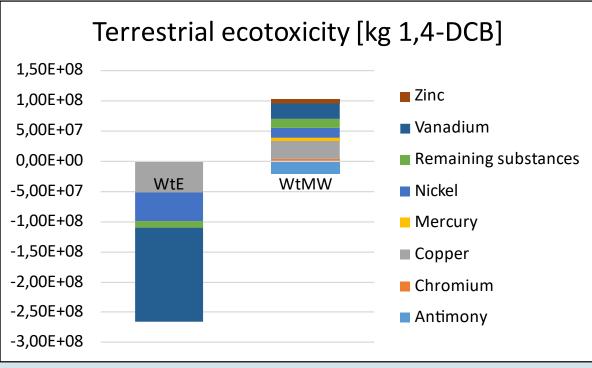
Emissioni come maggior contribuente nello scenario WtE.

Impatti più dislocati per WtM:

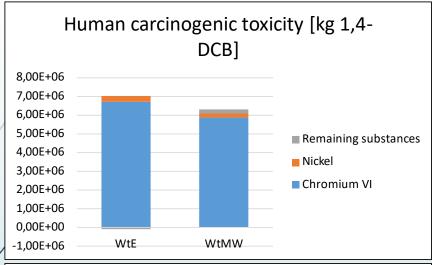
Maggior contributo derivante dal consumo

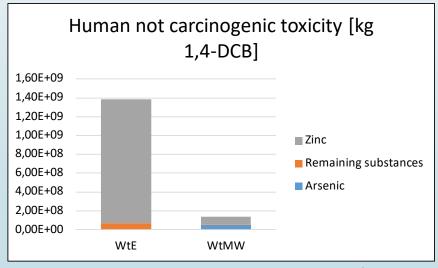

delle risorse e dai consumi energetici.

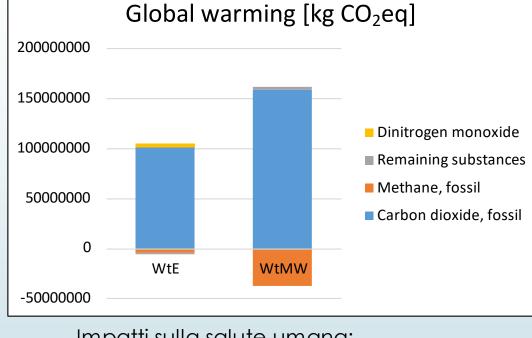

Milano- 07/03/23


Dott. Alessio Castagnoli, PhD Student - Università di Pisa

Risultati – analisi dei contributi

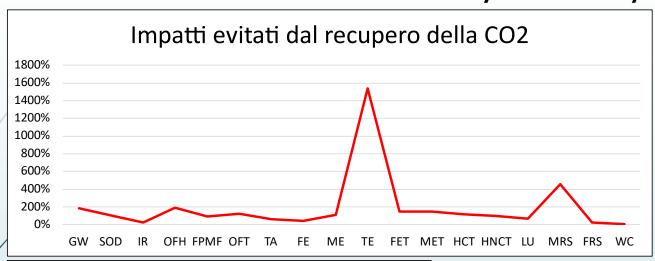



Impatti locali:


- Impatti ecotossicologici derivanti in gran parte dalle emissioni di Zinco e Rame;
- WtM con contributi molto minori, eccetto che per TE.

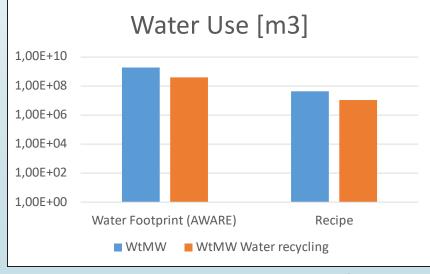
Risultati – analisi dei contributi

Impatti sulla salute umana:


- Impatti cancerogeni derivanti in entrambi i casi dalle emissioni di Cr VI;
- WtE molto più impattante, principalmente a causa di Zn.

Impatti sul Global warming:

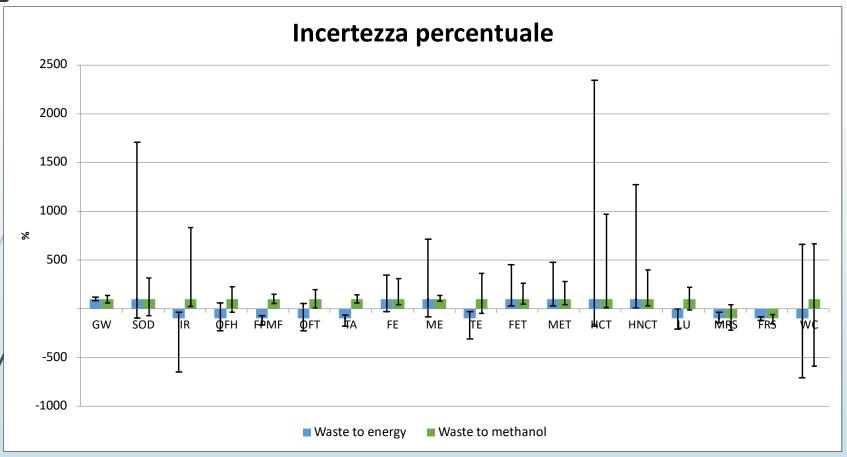
- Maggiori emissioni di CO₂ fossile per WtM;
- Compensazione del metano non sufficiente per compensare gli impatti.



Risultati – sensitivity analysis

<u>CO₂ come by-product invece che</u> emissione:

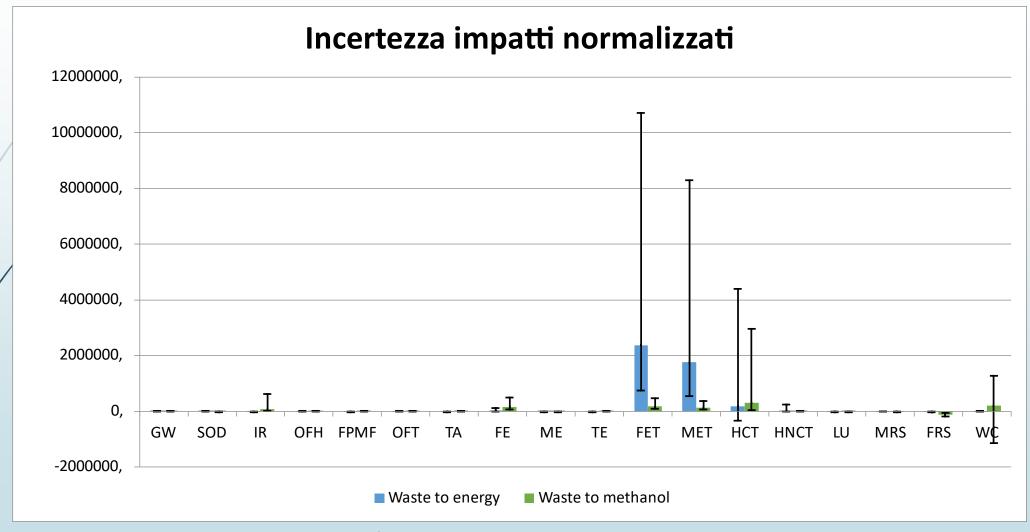
- La CO₂ dello scenario WtM esce ad una purezza del 95% circa e può essere recuperata;
- Un suo eventuale recupero, permetterebbe la riduzione degli impatti per ogni categoria (eccetto Water Consumption);
- I maggiori benefici sarebbero per Terrestrial Ecotoxicity e Mineral Resource Scarcity.



Applicazione di un sistema di recupero delle acque (weel water, deionised water, BFW) con efficienza del 90%:

- Riduzione di un ordine di grandezza dei consumi d'acqua;
- Consumi impiantistici principale fattore d'influenza;
- Tra l'applicazione del metodo Water Footprint e Recipe (H) c'è un ulteriore ordine di differenza.

Risultati – analisi d'incertezza



- Analisi d'incertezza con 25.000 run;
- 80,90% dei v alori con incertezza nota;
- Intervallo di confidenza fissato al 95%.

- WtE \rightarrow SEM compreso tra lo 0,035 e lo 0,001 della media (FET e GW);
- WtM → SEM compreso tra lo 0,023 e lo 0,001 della media (WC e GW)

Risultati – analisi d'incertezza

Discussioni

- Waste to Methanolidentificato come scenario con il minorimpatto totale:
 - **■** Zero **→** 9,37 10⁶
 - WtE \rightarrow 6,28 10⁶
 - WtM \rightarrow 1,39 10⁶
- Waste to Energy opzione migliore allo scenario zero per ogni categoria eccetto che HCT e SOD;
- Waste to Methanol opzione migliore allo scenario zero solo per specifiche categorie;
- Differenze di impatto determinate in larga parte dai minori impatti locali (FET, MET, TE).

Discussioni

- Scenario WtE dominato dai contributi delle emissioni, contenute invece all'interno di un impianto di Waste to Methanol;
- Elevato consumo di risorse per il WtM, derivante dall'utilizzo di energia elettrica e di ossigeno;
- Gli impatti derivanti dal consumo di metano sono completamente abbattuti grazie ad una produzione di metano superiore ai consumi;
- TE e MRS affetti anche dalla costruzione degli edifici, che impattano maggiormente in WtM a causa della maggiore complessità impiantistica;
- Il recupero della CO₂ prodotta (210.083 t) e un ciclo chiuso dell'acqua permetterebbero una notevole riduzione degli impatti.

Discussioni - criticità

- Impatti locali molto elevati e caratterizzati da maggiore incertezza (FET, MET, HCT), necessità di valutazioni più approfondite;
- Assenza di un modello che comprenda la fase della produzione di metanolo;
- Assenza di dati su impianti a scala reale per il WtM, a differenza del WtE che è un processo ben noto;
 - Dati relativi al processo di produzione di metanolo relativi ad un impianto pilota;
- Il WtM rappresenta una potenziale strada verso la decarbonizzazione del settore dei rifiuti, ma presenta dei grossi trade-off.

Conclusioni

- Confrontato il trattamento di 300.000 t di rifiuti secondari, di cui solo il 30% ad oggi valorizzato energeticamente;
- Confronto di tre scenari: Scenario zero, Waste to Energy e Waste to Methanol;
- Scenario WtM apparentemente migliore, ma con evidenti nodi da sciogliere e migliorie apportabili:
 - Necessità di una valutazione economica, che ne accerti l'effettiva realizzabilità;
 - Impatti maggiori per 11 categorie d'impatto su 18 al WtE (GW, IR, OFH, FPMF, OFT, TA, FE, ME, TE, HCNT e WC);
 - ► Fondamentale il recupero della CO₂, che però è un flusso difficile da valorizzare interamente:
 - Possibilità di un processo CO_2 free \rightarrow Scenario WtM Electrolysis, non discusso e che permette una duplicazione del metanolo prodotto grazie alla completa conversione di Co e CO_2 attraverso l'utilizzo di H_2 prodotto per elettrolisi.

References

- Borgogna, A., Iaquaniello, G., Salladini, A., Agostini, E., & Boccacci, M. (2021). Chemical Carbon and Hydrogen Recycle through Waste Gasification: The Methanol Route. Gasification.
- Turconi, R., Butera, S., Boldrin, A., Grosso, M., Rigamonti, L., & Astrup, T. (2011). Life cycle assessment of waste incineration in Denmark and Italy using two LCA models. Waste Management and Research, 29(10 suppl.), 78-90.
- ISO 14040; Environmental management—Life cycle assessment—Principles and framework. International Organization for Standardization: Geneva, Switzerland, 2006.
- ISO 14044; International Standard. Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Organization for Standardization: Geneva, Switzerland, 2006.
- International Reference Life Cycle Data System (ILCD) Handbook. General Guide for Life Cycle Assessment: Detailed Guidance, 1° ed.; Publications Office: Luxembourg, 2010.
- Agenzia Regionale Recupero Risorse. Rapporto Rifiuti Speciali, 2021.
- Alia Servizi Ambientali Spa. Report di sostenibilità 2020.

Aknowledgments

Questo progetto è stato realizzato grazie al supporto del mio gruppo di ricerca, guidato dall'Ing. Isabella Pecorini e dal Prof. Renato Iannelli.

Questa ricerca è stata supportata dal Ministero dell'Università e della Ricerca (MUR) come parte del PON 2014-2020 "Research and Innovation" resources Green/Innovation Action—DM MUR 1061/2022.