

Progettazione che facilita la fase di riciclo degli imballaggi a prevalenza cellulosica

Andrea Marinelli¹, Romina Santi², Barbara Bonori³, Federica Brumen³, Eliana Farotto³, Simona Fontana⁴, Giulia Picerno⁴, Barbara Del Curto¹

5ª Giornata di studio Rifiuti e Life Cycle Thinking 9 marzo 2021

¹ Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano

² Dipartimento di Design, Politecnico di Milano

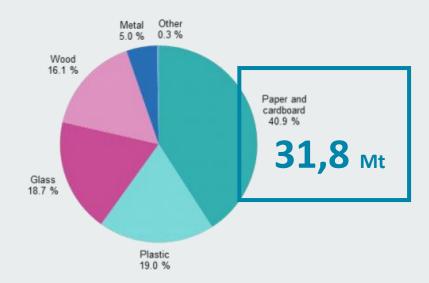
³ Comieco, Consorzio Nazionale Recupero e Riciclo degli Imballaggi a base Cellulosica

⁴ CONAI, Consorzio Nazionale Imballaggi

OBIETTIVO

Identificazione di **linee guida progettuali** mirate alla facilitazione delle operazioni di **riciclo** degli imballaggi a prevalenza cellulosica

AGENDA


- 1. Contesto attuale
- 2. Normative di riferimento

3. Filiera del riciclo

4. Linee guida progettuali

1. CONTESTO

Packaging waste generated by packaging material, EU-27, 2018

Note: Eurostat estimates.

Source: Eurostat (online data code: env_waspac)

(Eurostat, 2020)

eurostat

55,2%

Carta e cartone destinati ad uso packaging (rispetto al consumo totale)

(CEPI, 2020)

1. CONTESTO

Transizione dei modelli di consumo verso una economia circolare

Consumatori

Sempre più consapevoli

Packaging sostenibile è uno dei principali driver di scelta

(Nomisma, 2021)

Istituzioni

Fermento normativo a sostenere la transizione

2. NORMATIVE

94/62/CE E 2018/852

EN 643

EN 13430

UNI 11743 E ATICELCA 501

Gestione gerarchica dei rifiuti e obiettivi di riciclo sempre più ambiziosi Codifica del macero in gruppi in funzione della loro qualità Requisiti essenziali per il riciclo degli imballaggi Test riciclabilità e sistema di valutazione della riciclabilità

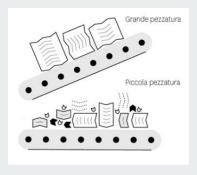
3. FILIERA DEL RICICLO

Attori della filiera

1. Raccolta

3. Riciclo

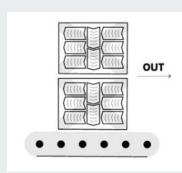
2. Selezione


3. FILIERA DEL RICICLO

1. Raccolta

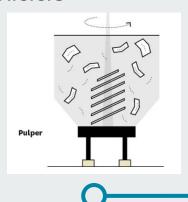
Da raccolta
differenziata o da
scarti industriali.
Ottimizzazione del
volume occupato

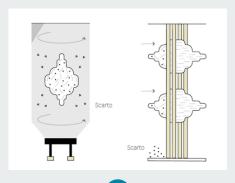
2. Selezione

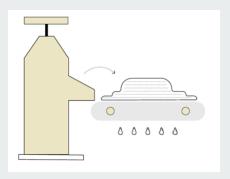


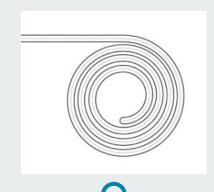
Separazione ottica e manuale.

Facilitare corretta


Facilitare corretta identificazione di specifici materiali e/o colorazioni




Pressatura in balle e spedizione


3. FILIERA DEL RICICLO

3. Riciclo

Spappolamento nel pulper. Viene aggiunta acqua al macero.

Garantire dispersione delle fibre. Limitare quantitativo di scarto

Passaggio attraverso filtri, cicloni e raffinatori per separare impurità Formatura del foglio, drenaggio, trattamenti e asciugatura.

Evitare stickies.

Qualità ottica è importante.

Limitare le sostanze disciolte nell'acqua

Avvolgimento in una bobina e cessione a produttori di imballaggi

PREMESSA

Non si può prescindere dal garantire le **prestazioni** del packaging in termini di funzionalità, la **sicurezza** del consumatore e l'adempimento delle **normative** in materia.

Categorizzazione

Componenti polimerici

Elementi aggiunti al packaging per migliorarne funzionalità e/o prestazioni

Substrato

Rivestimenti, laminazioni, multistrato, carte speciali e inchiostri

Adesivi e fissaggi

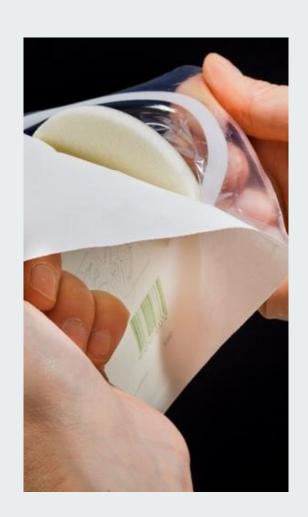
Sistemi per garantire struttura al packaging

Contenuto

Residui e contaminazione dovuti al bene imballato

Componenti polimerici

Minimizzare


Minimizzare il contenuto non cellulosico favorendo, ove possibile, soluzioni monomateriali

Natura polimero ininfluente

Lo scarto viene avviato a recupero energetico, sia esso un polimero sintetico o biodegradabile, compostabile, biobased

Soluzioni pelabili

Favorire soluzioni pelabili, permettendo una separazione manuale da parte del consumatore

Substrato

Laminazioni, rivestimenti, ecc.

Minimizzare il contenuto di strati polimerici, favorendo soluzioni pelabili

Un solo lato

Evitare il rivestimento su entrambi i lati del substrato

Substrato

Carte speciali

Le carte speciali sono difficili da spappolare

Inchiostri

Minimizzare l'uso di inchiostri e limitare le aree interessate. Evitare inchiostri UV, favorendo quelli a base acqua

Adesivi e fissaggi

Minimizzare

Minimizzarne il quantitativo, favorendo eventualmente soluzioni ad incastro Adesivi hot-melt

Evitare adesivi hot-melt con temperatura di rammollimento inferiore a 45 °C Nastri adesivi

Limitarne l'uso, specialmente nel settore e-commerce

Contenuto

Svuotamento

Progettare un imballaggio che sia facilmente svuotabile, limitando quantitativi residui

Limitare aree

Minimizzare le superfici esposte al rischio di contaminazione, prevedendo soluzioni pelabili o separabili

Rifiuti organici

Progettare packaging alimentare soggetto a residui consistenti per essere destinato alla filiera organica

CONCLUSIONE

Riciclare carta e cartone è una pratica consolidata, ma per raggiungere gli obiettivi comunitari c'è bisogno di tutta la filiera, a partire dalla **progettazione del packaging**.

È questa fase che determina tanti aspetti che riguardano il fine vita di un imballaggio e il suo impatto ambientale.

PER MAGGIORI INFORMAZIONI

www.progettarericiclo.com

GRAZIE PER L'ATTENZIONE

Andrea Marinelli andrea.marinelli@polimi.it