

Effectiveness and efficiency of construction and demolition waste recycling in Lombardy: a life cycle based evaluation <u>Lucia Rigamonti</u>, Sara Pantini

Politecnico di Milano - Department of Civil and Environmental Engineering (Italy) – AWARE Research group MatER Research Center c/o LEAP, Piacenza (Italy)

5 TH CONFERENCE ON FINAL SINKS

RECYCLING AND ITS EFFECTS ON PRODUCT QUALITY AND FINAL SINK NECESSITY

08 - 11 DECEMBER 2019 / VIENNA / AUSTRIA

RESEARCH PROJECT

OBJECTIVES OF THE RESEARCH PROJECT

- Quantifying construction and demolition waste (CDW) amount and flows within the management system of Lombardy Region
- Investigating types, amount and quality of "secondary products" obtained from CDW recovery plants and their actual use (highlighting the limiting factors for their market)
- Assessing the environmental performance of the current regional management system through the application of the Life Cycle Assessment (LCA) methodology
- Identifying benefits and critical aspects of the CDW management system
- Defining possible improving actions based on the state-of-the-art recovery technology and the LCA results of the current management scenario, to be compared and evaluated from a life cycle perspective

LOMBARDY REGION - ITALY

NON-HAZARDOUS CDW INCLUDED IN THE STUDY:

EUROPEAN WASTE CODE (EWC) 17 XX XX:

>17 01 concrete, bricks, tiles and ceramics

- > CONCRETE (17 01 01)
- BRICKS (17 01 02)
- TILES AND CERAMICS (17 01 03)
- CONCRETE, BRICKS, TILES AND CERAMICS IN MIXTURES, CONTAINING NON HAZARDOUS SUBSTANCES (17 01 07)
- >17 02 wood, glass and plastic (17 02 01, 17 02 02, 17 02 03)

>>17 03 bituminous mixtures, coal tar and tarred products (17 03 02)

17 04 metals (including their alloys) (17 04 01, 17 04 02, 17 04 03, 17 04 04, 17 04 05, 17 04 06, 17 04 07, 17 04 11)

>17 08 gypsum-based construction material (17 08 02)

>17 09 other construction and demolition waste

> MIXED CONSTRUCTION AND DEMOLITION WASTES (17 09 04)

RESULTS: CDW FLOWS

SETTING UP THE LCA

SETTING UP THE LCA

materia & energia da rifiuti

naterials & energy from refuse

RECYCLING FACILITIES INVENTORY

LCA 1: RECYCLING PLANTS

MODELLING THE SUBSTITUTION

MODELLING THE SUBSTITUTION

INFORMATION OBTAINED DATA SOURCES - Authorized volumes in 10 years (283,074,399 t) - Extractive activities distribution on the territory Local guarries (Milano, Brescia, Bergamo) plans - Authorized volume for dry (40%), wet (44%) and terrace extraction (16%) Modelling the natural Quantities of extracted material every year, energy Local authorities aggregates consumption and destination of natural aggregates production in statistics produced Lombardy region **Ouarries** Characteristics associated with the various types of quarry technical visits cultivation

Dry pit quarry

Wet pit quarry

Terrace quarry

REPLACEMENT COEFFICIENT (R) BETWEEN RA AND NA CALCULATION

RA = recycled aggregates NA = natural aggregates

LCA OF BASELINE SCENARIO, IN COMPARISON WITH A LANDFILL SCENARIO FOR 1 t OF MIXED CDW

measure	SCENARIO	LANDFILL SCENARIO	
kg CO ₂ eq	3.40	11.44	
kg CFC-11 eq	9.27E-07	3.09E-06	
CTUh	7.32E-06	1.86E-04	
CTUh	5.00E-06	3.43E-06	
kg PM2.5 eq	2.93E-03	9.21E-03	
kg NMVOC eq	0.03	0.08	
mol H+ eq	0.02	0.08	
mol N eq	0.10	0.27	
kg P eq	-1.38E-03	3.06E-03	
kg N eq	0.01	2.45E-02	
CTUe	226.1	4031.7	
m ³ water eq	0.02	0.04	
renewable resource depletion kg Sb eq 2.81E-04		5.81E-04	
MJ	65.0	304.5	
kg sand&gravel	-611.4	175.3	
m ³	0.69	-	
	kg CO2 eqkg CFC-11 eqCTUhCTUhCTUhkg PM2.5 eqkg NMVOC eqmol H+ eqmol N eqkg P eqkg N eqCTUem³ water eqkg Sb eqMJkg sand&gravelm³	measure SCENARIO kg CO ₂ eq 3.40 kg CFC-11 eq 9.27E-07 CTUh 7.32E-06 CTUh 5.00E-06 kg PM2.5 eq 2.93E-03 kg NMVOC eq 0.03 mol H+ eq 0.02 mol N eq 0.10 kg P eq -1.38E-03 kg N eq 0.01 CTUe 226.1 m ³ water eq 0.02 kg Sb eq 2.81E-04 MJ 65.0 kg sand&gravel -611.4	

The actual CDW management system implemented in Lombardy region

- has <u>better environmental performances than the landfill</u> disposal
- <u>but the induced environmental impacts are higher than the benefits</u> arising from CDW recycling. The biggest environmental burdens come from waste transportation and are not balanced by the small avoided impacts associated with the use of recycled aggregates in the actual applications (i.e. low grade applications)</u>

The system can be improved so that the environmental benefits associated with the use of recycled aggregates compensate the impacts due to the waste management system itself

PROMOTE THE MARKET OF THE RECYCLED AGGREGATES

Regulatory tools aimed at promoting the use of recycled aggregates	Green Public Procurement		
Mining sector planning aimed at having a more sustainable use of natural resources	 Higher taxes for the extraction activities More rational permission system, that considers recycled aggregates availability on the territory 		
Adapt the technical tools to the European standards	Special tender dossier, price list of construction works		

IMPROVE THE QUALITY OF RECYCLED AGGREGATES

Selective demolition on site to improve the CDW quality entering the recycling facilities	 Separation of undesired materials Market creation for those materials that are now mixed together before the recycling treatment
Improve the plant technologies	 Encourage and promote the authorization of recycling facilities powered by electricity Improve selection efficiencies; implement more advanced plant technologies

OPTIMISE THE MANAGEMENT SYSTEM

Minimize transport distances and temporary management phases	 Optimal facilities distribution Updating recycling plants regional lists and maps Promote the opening of facilities where it is needed 			
Reduce landfill disposal	Increase disposal taxesBan on disposal for those fraction that can be recycled			

SETTING UP THE LCA

LCA 3: GYPSUM WASTE MANAGEMENT

Fig. 1. Gypsum waste (GW) management in the alternative scenarios (AS). T = transportation.

LCA 3: MODELLING THE SUBSTITUTION

Alternative scenario	End-uses	Avoided primary product	Adopted RC	RC computational method	Note
SA1	Plasterboards production	Natural Gypsum	0.882	Purity of GR Purity of GN	In terms of calcium sulphate content (CaSO4 *2H2O) - measured
SA2	Cement production	Natural Gypsum	0.991	<u>Purity of GR</u> Purity of GN	Absence of residual liner paper (= 1 - TOC). Purity of natural gypsum assumed equal to 1
SA3	Sewage sludge treatment	Natural Gypsum	0.9	Dosage of GN Dosage of GR	Primary data from a sewage sludge treatment plant
SA4	Agriculture (pH raising agent)	Quicklime	0.4	Alkaline power of GR Alkaline power of quicklime	Stoichiometric estimation - same solubility

RC: replacement coefficient between secondary and primary materials GR: recycled gypsum; GN: natural gypsum

LCA 3: RESULTS

BASELINE (LCA1) vs ALTERNATIVE SCENARIO (SA3): IMPACTS PER TONNE OF GYPSUM WASTE

	Unit	Baseline scenario	SA3		
Environmental impact categories (ILCD)					
Climate change	kg CO2 eq/t	3.1	-158		
Ozone depletion	kg CFC-11 eq/t	8.36E-07	-1.4E-05		
Human toxicity, non-cancer	CTUh/t	1.23E-06	-5.0E-05		
Human toxicity, cancer	CTUh/t	4.84E-06	-1.0E-05		
Particulate matter	kg PM2.5 eq/t	2.65E-03	-2.1E-01		
Photochemical ozone formation	kg NMVOC eq/t	0.02	-0.73		
Acidification	mol H+ eq/t	0.03	-1.42		
Terrestrial eutrophication	mol N eq/t	0.07	-2.73		
Freshwater eutrophication	kg P eq/t	2.93E-02	-1.2E-01		
Marine eutrophication	kg N eq/t	4.09E-03	-2.8E-01		
Freshwater eco-toxicity	CTUe/t	93.82	-1,328		
Water resource depletion	m ³ water eq/t	1.95E-02	2.3E-01		
Mineral & fossil resource depletion	kg Sb eq/t	2.68E-04	-4.3E-03		
Energetic indicator (CED)	MJ eq/t	56.3	-3,855		
Natural resources consumption:					
Sand and gravel indicator	kg/t	-617	-		
Natural gypsum indicator	kg/t	-	-755		

PERCENTAGE CONTRIBUTION TO THE TOTAL IMPACT (SA3)

- RECYCLING GW IN DEDICATED PLANTS IS MUCH MORE BENEFICIAL THAN ITS RECYCLING BY MIXING WITH OTHER CDW
- AVOIDING THE MIXING OF GW WITH INERT CDW ALLOWS TO ENHANCE THE TECHNICAL PROPERTIES OF RECYCLED AGGREGATES FROM CDW AND THEIR MARKET DEMAND
- □ LARGEST ENVIRONMENTAL BENEFITS COME FROM THE RECOVERY OF PAPER/CARDBOARD SEPARATED FROM GW TREATMENT

Results of all alternative scenarios (SA1-SA4) are expressed per tonne of gypsum waste and do not include benefits from paper recovery

						BEST PERFORMANCE
	Unit	Baseline scenario	SA1	SA2	SA3	SA4
Environmental impact categor	ies (ILCD)					
Climate change	kg CO2 eq/t	3.1	2.7	-1.5	-1.28	-10.7
Ozone depletion	kg CFC-11 eq/t	8.36E-07	3.2E-07	-5.8E-07	-3.7E-07	-2.1E-07
Human toxicity, non-cancer	CTUh/t	1.23E-06	2.1E-07	-8.8E-07	-5.7E-07	-3.8E-06
Human toxicity, cancer	CTUh/t	4.84E-06	7.1E-08	-3.7E-08	-3.2E-08	-6.1E-07
Particulate matter	kg PM2.5 eq/t	2.65E-03	1.5E-03	-1.3E-03	-6.2E-04	-1.5E-02
Photochemical ozone formation	kg NMVOC eq/t	0.02	0.01	-0.02	-0.01	-0.03
Acidification	mol H+ eq/t	0.03	0.02	-0.01	-4.6E-03	-0.08
Terrestrial eutrophication	mol N eq/t	0.07	0.04	-0.06	-0.03	-0.12
Freshwater eutrophication	kg P eq/t	2.93E-02	5.8E-04	4.3E-04	1.1E-04	-4.2E-03
Marine eutrophication	kg N eq/t	4.09E-03	3.7E-03	-5.4E-03	-2.3E-03	-1.4E-02
Freshwater eco-toxicity	CTUe/t	93.82	9.71	-18	-13.19	-68.34
Water resource depletion	m ³ water eq/t	1.95E-02	0.02	0.03	0.01	-0.01
Mineral & fossil resource depletion	kg Sb eq/t	2.68E-04	1.9E-07	-2.3E-04	-1.4E-04	-4.4E-04
Energetic indicator (CED)	MJ eq/t	56.3	45	-30	-24	-224
Natural resources consumption:						
Sand and gravel indicator	kg/t	-617	-	-	-	-
Natural gypsum indicator	kg/t	-	-740	-831	-755	0

- There is only one GW recycling plant in the region and GW is mostly (99.5%) recycled in CDW facilities → <u>deficiency of the regional GW management system</u>
 → at least, two more plants are needed to cover current GW generation
- <u>Better</u> environmental performance of <u>dedicated GW recycling</u>, compared to that of mixing GW with CDW → **GW recycling in dedicated plants should be promoted** (→ enhanced technical properties of mixed recycled aggregates and potentially increase their market demand)
- Recycling GW in dedicated facilities leads to <u>significant savings</u>, <u>mainly ascribed</u> to the recovery of paper → the adoption of adequate technologies able to achieve high-quality recycled gypsum and to separate cardboard/paper sufficiently pure to be destined to paper factories should be fostered
- Comparison among alternative end-uses of the recycled gypsum (excluding the benefits from paper recycling): the plasterboards production is the least viable option due to the nonexistence of manufacturing plants in the regional territory (→ long transport distances); the best environmental and energetic profile is associated to the use of the recycled gypsum in the <u>agricultural sector</u> → promotion of the use of recycled gypsum in the different technically feasible applications (cement production, sludge treatment, agriculture)

PUBLICATIONS

ACKNOWLEDGMENTS

This research project was financially supported by the Lombardy region government. We thank ARPA Lombardia, ANPAR and ANCE for the technical support; local officers for having supplied quarries statistic data; all CDW plants and quarries managers for having supplied primary data for the LCA study and road companies for the information about recycled aggregates final use.

THANK YOU FOR YOUR ATTENTION

Iucia.rigamonti@polimi.it www.aware.polimi.it

Rigamonti L., Effectiveness and efficiency of C&D waste recycling in Lombardy, Final sinks 2019