

and REsources

ASSESSMENT OF THE CDW MANAGEMENT SYSTEM IMPLEMENTED IN LOMBARDY REGION (ITALY) Lucia Rigamonti, Sara Pantini

Politecnico di Milano - Department of Civil and Environmental Engineering (Italy) – AWARE Research group MatER Research Center c/o LEAP, Piacenza (Italy)

RESEARCH PROJECT

OBJECTIVES OF THE RESEARCH PROJECT

- Quantifying construction and demolition waste (CDW) amount and flows within the management system of Lombardy Region
- Investigating types, amount and quality of "secondary products" obtained from CDW recovery plants and their actual use (highlighting the limiting factors for their market)
- Assessing the environmental performance of the current regional management system through the application of the Life Cycle Assessment (LCA) methodology
- Identifying benefits and critical aspects of the CDW management system
- Defining possible improving actions based on the state-of-the-art recovery technology and the LCA results of the current management scenario, to be compared and evaluated from a life cycle perspective

LOMBARDY REGION - ITALY

NON-HAZARDOUS CDW INCLUDED IN THE STUDY:

EUROPEAN WASTE CODE (EWC) 17 XX XX:

>17 01 concrete, bricks, tiles and ceramics

- CONCRETE (17 01 01)
- > BRICKS (17 01 02)
- TILES AND CERAMICS (17 01 03)
- CONCRETE, BRICKS, TILES AND CERAMICS IN MIXTURES, CONTAINING NON HAZARDOUS SUBSTANCES (17 01 07)
- >17 02 wood, glass and plastic (17 02 01, 17 02 02, 17 02 03)

>17 03 bituminous mixtures, coal tar and tarred products (17 03 02)

17 04 metals (including their alloys) (17 04 01, 17 04 02, 17 04 03, 17 04 04, 17 04 05, 17 04 06, 17 04 07, 17 04 11)

>17 08 gypsum-based construction material (17 08 02)

>17 09 other construction and demolition waste

> MIXED CONSTRUCTION AND DEMOLITION WASTES (17 09 04)

RESULTS: CDW FLOWS

materia & energia da rifiuti materiais & energy from refuse

SETTING UP THE LCA

materia & energia da rifiuti materials & energy from refuse Rigamonti L., Assessment of the CDW management system in Lombardy region (Italy), Heraklion 2019

PUBLICATIONS

LCA 1: RECYCLING PLANTS

The actual CDW management system implemented in Lombardy region

- has <u>better environmental performances than the landfill</u> disposal
- <u>but the induced environmental impacts are higher than the</u> <u>benefits</u> arising from CDW recycling. The biggest environmental burdens come from waste transportation and are not balanced by the small avoided impacts associated with the use of recycled aggregates in the actual applications (i.e. low grade applications)

The system can be improved so that the environmental benefits associated with the use of recycled aggregates compensate the impacts due to the waste management system itself

materia & energia da rifiuti

materials & energy from refuse

PROMOTE THE MARKET OF THE RECYCLED AGGREGATES

Regulatory tools aimed at promoting the use of recycled aggregates	Green Public Procurement
Mining sector planning aimed at having a more sustainable use of natural resources	 Higher taxes for the extraction activities More rational permission system, that considers recycled aggregates availability on the territory
Adapt the technical tools to the European standards	Special tender dossier, price list of construction works

IMPROVE THE QUALITY OF RECYCLED AGGREGATES

Selective demolition on site to improve the CDW quality entering the recycling facilities	 Separation of undesired materials Market creation for those materials that are now mixed together before the recycling treatment
Improve the plant technologies	 Encourage and promote the authorization of recycling facilities powered by electricity Improve selection efficiencies; implement more advanced plant technologies

OPTIMISE THE MANAGEMENT SYSTEM

Minimize transport distances and temporary management phases	 Optimal facilities distribution Updating recycling plants regional lists and maps Promote the opening of facilities where it is needed
Reduce landfill disposal	Increase disposal taxesBan on disposal for those fraction that can be recycled

LCA 2: ASPHALT WASTE MANAGEMENT

LCA 2: ASPHALT WASTE MANAGEMENT

MESCOLATOR

S. Pantini et al./Waste Management 80 (2018) 423-434

Fig. 2. Diagram flow of recycling 1 tonne of RAP in hot-mix asphalt plants with indication of credits and burdens for the system.

LCA 2: ASPHALT WASTE MANAGEMENT

S. Pantini et al. / Waste Management 80 (2018) 423-434

* CMA with RAP is generally used as basecourses in roads with medium/high traffic volume or as base/binder courses in case of low traffic level. To take into account for the lower field performances, road constructors usually increase by 30–50% the thickness of the layer compared to the typical value required for traditional HMAs

- The LCA analysis of the current regional system for recycling asphalt waste in new asphalt mixes is <u>already characterized</u> <u>by good environmental performances</u>
- The largest benefits come from the <u>use of RAP in the</u> <u>manufacturing of hot asphalt mixtures</u>, which appeared as the most widespread recycling technology in the region and which provides better environmental performance compared to cold recycling in plants
- The <u>lower performances associated to cold recycling</u> <u>techniques</u> are mainly due to the use of bitumen emulsion and cement, whose production processes appear highly impacting, and to the inferior quality of CMAs compared to HMAs which implies a replacement coefficient minor than 1 to guarantee the same pavement lifetime

- <u>Updating technical specifications in public road projects</u> to prevent discrimination/excessive restrictions in the use of RAP in asphalt pavements
- <u>Promoting RAP recycling in hot mix asphalt</u> while reducing the use of RAP as unbound material in road construction
- Incentivizing the <u>revamping of HMA plants</u> to favor the adoption of innovative technologies that ensure lower environmental impacts and larger dosage of RAP into the final mixtures
- <u>Optimizing waste transportation</u> through a widespread coverage of the regional territory

LCA 3: GYPSUM WASTE MANAGEMENT

Fig. 1. Gypsum waste (GW) management in the alternative scenarios (AS). T = transportation.

- There is only one GW recycling plant in the region and GW is mostly (99.5%) recycled in CDW facilities → <u>deficiency of the</u> regional GW management system
- <u>Better</u> environmental performance of <u>dedicated GW recycling</u>, compared to that of mixing GW with CDW
- Recycling GW in dedicated facilities leads to <u>significant</u> savings, mainly ascribed to the recovery of paper
- Comparison among alternative end-uses of the recycled gypsum (excluding the benefits from paper recycling): the plasterboards production is the least viable option due to the nonexistence of manufacturing plants in the regional territory (→ long transport distances); the best environmental and energetic profile is associated to the use of the recycled gypsum in the <u>agricultural sector</u>

WASTE MANAGEMENT	 Solving the under-capacity of the regional system for managing gypsum waste → at least, two more plants are needed to cover current GW generation Reducing transport distances of wastes and secondary materials → strategic planning of future recycling facilities
WASTE PROCESSING	1. Avoiding the mixing of gypsum waste with other mineral CDW \rightarrow promoting GW recycling in dedicated plants
	> To enhance technical properties of recycled aggregates from CDW and potentially increase their market demand
	 Incentivizing the adoption of adequate technologies able to achieve high-quality recycled gypsum and to separate cardboard/paper sufficiently pure to be destined to paper factories
MARKET	Promoting the use of recycled gypsum in the different technically feasible applications (cement production, sludge treatment, agriculture)

ACKNOWLEDGMENTS

This research project was financially supported by the Lombardy region government. We thank ARPA Lombardia, ANPAR and ANCE for the technical support; local officers for having supplied quarries statistic data; all CDW plants and quarries managers for having supplied primary data for the LCA study and road companies for the information about recycled aggregates final use.

THANK YOU FOR YOUR ATTENTION

Iucia.rigamonti@polimi.it www.aware.polimi.it

materia & energia da rifiuti materials & energy from refuse Rigamonti L., Assessment of